

Government College

Jatauli, Haily Mandi, Gurugram, Haryana Email Id: <u>gcjatauli1980@gmail.com</u>

Ref No.....

Date.....

Chemistry- Course Outcome

The chemistry course curriculum for the undergraduates includes the main areas of chemistry: organic, inorganic, physical chemistry. The purpose of the program is to provide the key knowledge base and laboratory resources to prepare students for careers as professionals in the field of chemistry. The students are taught how to design and carry out scientific experiments as well as accurately record and analyze the results of such experiments.

- After completion of degree, students shall gain the theoretical as well as practical knowledge of handling chemicals.
- Achieve the skills required to succeed in graduate school, professional school and the chemical industry like cement industries, agro product, Paint industries, Rubber industries, Petrochemical industries, Food processing industries, cosmetic industries, Fertilizer industries etc.
- Got exposures of a breadth of experimental techniques using modern instrumentation. Understand the importance of the elements in the periodic table including their physical and chemical nature and roles in the daily life.

Semester 1 st	Course: Atomic structure, Periodic table and atomic properties,
	Covalent bond, Ionic Solids, Gaseous, liquid and solid state, Structure
	and bonding, Stereochemistry, Mechanism of organic reactions,
	Alkanes and cycloalkanes
	The course aims making the students understand the basic idea of atomic
	structure, elements and their properties and how this can be helpful in
	understanding the covalent and ionic bonding in various molecules.
	Students should be able in predicting geometries of simple molecules.
	Students should be able to understand the solid, liquid and gaseous states of
	matter. Further, study of course of organic chemistry is helpful in making
	students skilled in area of stereochemistry, assigning mechanism to organic
	reactions and synthesis of alkanes and cycloalkanes.
Semester 2 nd	Course: Hydrogen bonding and Vander Waals forces, Metallic bonding
	and semiconductors, s,p-block elements, Chemistry of noble gases,
	Chemical kinetics, Electrochemistry-I, Alkene, Alkynes, Dienes, Arenes,
	Aromaticity, Alkyl and aryl halides
	The course lays an emphasis on various types of bondings, properties and
	structure of compounds of s and p-block elements. The students are become
	able to understand the concept of activation energy, steady state, and zero,
	first and second order rate laws. The students will be made to understand the
	basic concepts of electrochemistry and its applications. Students become

	familiar with synthesis, physical and chemical properties of alkene, alkynes,
	dienes, arenes, aromaticity, alkyl and aryl halides.
Semester 3 rd	Course: d-block elements, Coordination compounds, Non-aqueous
	solvents, Thermodynamics-I, Chemical equilibrium, Distribution law,
	Alcohols, phenols and epoxides, UV spectroscopy, Aldehydes and
	ketones
	This course is designed to impart knowledge regarding d-block elements
	and coordination compounds. Students shall understand about chemistry of
	non-aqueous solvents, thermodynamical aspects and equilibrium in
	chemical reactions. Students are expected to learn about synthesis, physical
	and chemical properties of alcohols, phenols and epoxides, aldehydes and
	ketones. With the help of UV-spectroscopy students will find the
41	conjugation in organic compounds
Semester 4 th	Course: Chemistry of f-block elements, Theory of qualitative and
	quantitative analysis, Thermodynamics-II, Electrochemistry-II,
	Infrared spectroscopy, Amines, Carboxylic acids and their derivatives,
	Diazonium salts.
	Upon successful completion students should be able to state and understand
	the properties of f-block elements and their salts. Apply the laws of
	thermodynamics; perform calculations with ideal and real gases; design
	practical engines by using thermodynamic cycles; predict chemical
	equilibrium and spontaneity of reactions by using thermodynamic
	principles. Students should be able to apply the concepts of
	electrochemistry; predicting the functional groups of organic compounds.
	Students should become familiar with synthesis, physical and chemical
	properties of amines, Diazonium saits, Carboxylic acids and their
Semester 5 th	Course: Motal ligand banding electronic speatre and magnetic
Semester 5	nonerties of transition metal complexes Thermodynamic and kinetic
	aspects of metal complexes, Ouantum Chemistry, Spectroscopy
	(Rotational, Vibrational, Raman), Physical properties and molecular
	structure. NMR spectroscopy. Carbohydrates. Organometallic
	compounds.
	Students should become able in predicting in type of bonding in metal-
	ligands, electronic spectra and magnetic properties of transition metal
	complexes. Further students understand about concept of quantum
	chemistry. On the basis of spectroscopy, students become able in predicting
	the structure of various type of organic and inorganic compounds. To
	understand the use of carbohydrates in real life situations and apply the
	methods to use organometallic reagents in various preparations.
Semester 6 th	Course: Acids and bases, Organometallic chemistry, Bioinorganic
	chemistry, Silicons, Phosphazenes, Solutions, Phase equilibrium,
	Photochemistry, Introduction to stastical mechanics, Organic synthesis
	via enolates, Heterocyclic compounds, Amino acids, peptides &
	proteins, Synthetic Polymers, Sulphur Compounds
	Students became familiar to the use of acids and bases in everyday life and
	apply the methods to use organometallic reagents in various inorganic
	preparations. Students became able to understand the uses of various
	elements in our body organs. Students can choose various types of silicone
	polymers as per their use as well as phosphazenes. Students become able to

prepare solutions of various concentrations, extraction by using lead-silver
process and water-sulphur system. Students may apply the synthesis
methods via enolates, synthesize heterocyclic compounds of medicinal use
and synthesize amino acids, peptides and proteins. Students should
understand properties of various polymers and sulphur compounds.